ANLAGE ZUM GERUCHSTECHNISCHEN BERICHT NR. LG13090.1/01

über die Ermittlung und Beurteilung der Geruchsimmissionssituation im Bereich des Bebauungsplanes Nr. 341 "Dorenberg, Teil III" in Glandorf

Auftraggeber:

Gemeinde Glandorf Münsterstraße 11 49219 Glandorf

Bearbeiter:

Dipl.-Ing. Thomas Drosten

Datum:

29.08.2017

ZECH Ingenieurgesellschaft mbH Lingen • Hessenweg 38 • 49809 Lingen
Tel +49 (0)5 91 - 8 00 16-0 • Fax +49 (0)5 91 - 8 00 16-20 • E-Mail Lingen@zechgmbh.de

- **□ IMMISSIONSSCHUTZ**
- ☐ BAUPHYSIK
- □ PRÜFLABORE

1.) Tierbestände

Die Angaben zu den Tierbeständen der landwirtschaftlichen Betriebe sowie die Betriebslagepläne mit Darstellung der Lage der Emissionsquellen sind nicht im Gutachten dokumentiert, sondern werden in dieser Anlage separat aufgeführt.

Die für die Berechnung der Geruchsemissionen benötigten Tierbestände wurden nach Vorgabe der Gemeinde Glandorf zwei zur Verfügung gestellten Geruchsuntersuchungen für umliegende landwirtschaftliche Betriebe entnommen. Die örtlichen Gegebenheiten sowie die Stall- und Lüftungstechnik der Betriebe wurden im Rahmen eines Ortstermins am 10.08.2017 ohne Einbindung der Betreiber aufgenommen.

Bei Biogasanlagen sind die diffusen Geruchsemissionen aus der Behälteraspiration, der Gärrestverladung oder dem Substratinput sowie die Abgasemissionen von BHKW-Motoren nur im unmittelbaren Nahbereich der Anlagen wahrnehmbar. Die Anschnittsfläche der Silagemieten stellt die relevante, auch in größerer Entfernung wahrnehmbare Geruchsquelle einer Biogasanlage dar. Da der Abstand der Biogasanlage des Betriebes Schräder mehr als 600 m zum Plangebiet beträgt, wurde nur die Silagelagerung der Biogasanlage berücksichtigt.

In der Anlage 1 sind die Angaben zu den Tierbeständen und ermittelten Geruchsemissionen aufgeführt.

Die Betriebslagepläne mit Darstellung der Lage der Emissionsquellen sind in der Anlage 2 dokumentiert.

2.) Kläranlage

Die Geruchsemissionen der Kläranlage wurden mit Hilfe der Geruchsdatenbank "GERDA - EDV-Programm zur Abschätzung von Geruchsemissionen aus Anlagen" des Ministeriums für Umwelt und Verkehr Baden-Württemberg ermittelt. Die für die Berechnung der Geruchsemissionen benötigten Oberflächen der geruchsrelevanten offenen Anlagenbereiche (Sandfang und Becken) wurden anhand von Luftbildern aufgenommen und vermessen.

Die Angaben zu den Betriebsdaten der Kläranlage (offene Beckenoberflächen) sind nicht im Gutachten dokumentiert, sondern wurden unserem Auftraggeber zur Verfügung gestellt.

Basierend auf der Geruchsdatenbank "GERDA" wurden für die Becken- und Anlagenbereiche die in der nachfolgenden Tabelle angegebenen Geruchsemissionen in MGE/h bzw. GE/s berechnet.

Tabelle 1 Geruchsemissionen der Kläranlage Glandorf

Emissionsquelle	Oberfläche	spez. Geruchs- stoffstrom	Geruch	sstoffstrom	
	[m²]	[GE/(m² · h)]	[MGE/h]	[GE/s]*	
Sandfang	22	3.690	0,1	28	
Belebungsbecken	572	600	0,3	83	
Nachklärbecken	227	150	0,1	28	
Trübwasser aus Schlamment- wässerung	133	18.360	2,4	667	
Stapelbehälter für stabilisierten Schlamm	133	2.988	0,4	111	
Summe	3,3	917			

^{*} aus dem gerundeten Geruchsstoffstrom in MGE/h berechnet.

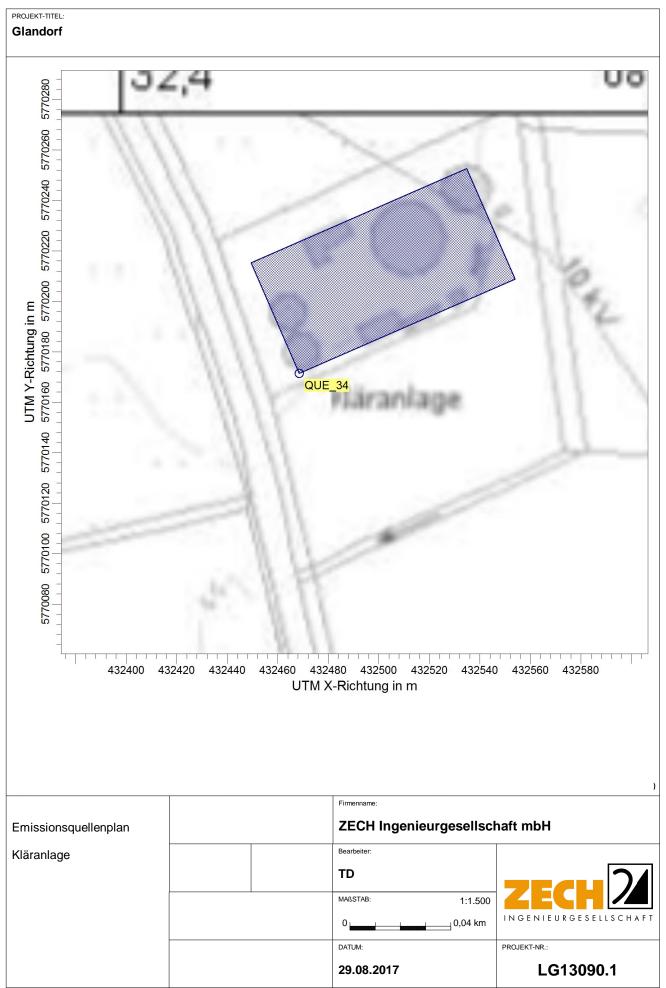
Die Berechnungsdatenblätter von GERDA mit den ermittelten Geruchsemissionen für die genehmigte Situation sind in der Anlage 3 aufgeführt.

3.) Anlagen

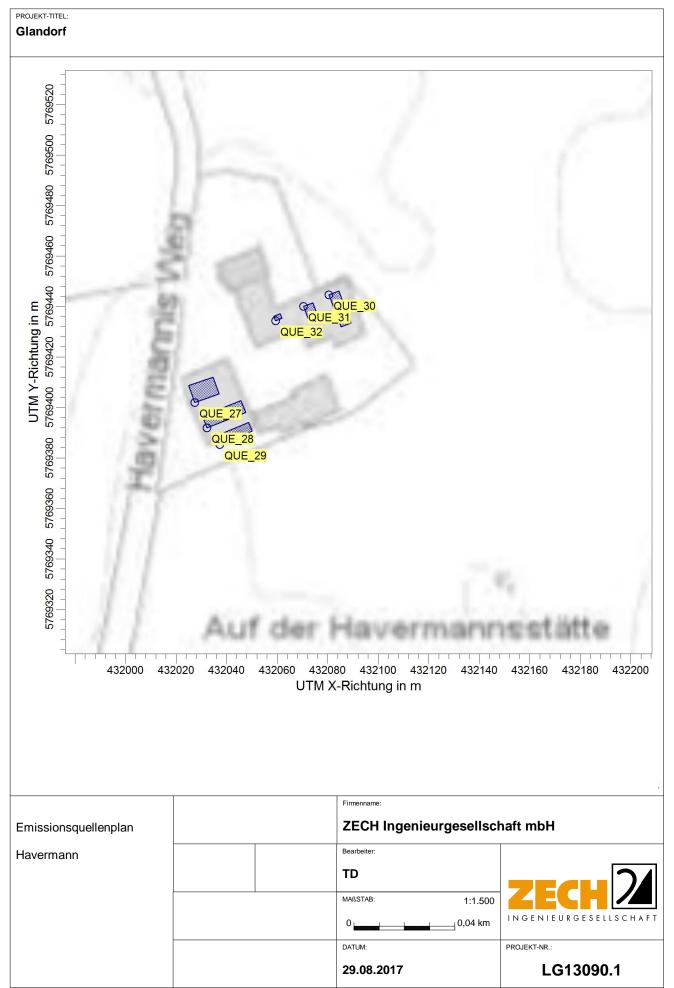
Anlage 1: Angaben zu den Tierbeständen und ermittelte Geruchsemissionen

Anlage 2: Lagepläne mit Lage der Emissionsquellen

Anlage 3: Berechnungsdatenblätter GERDA


Anlage 1: Angaben zu den Tierbeständen und ermittelte Geruchsemissionen

Betriebseinheit	Tiere			Geruchsemission			First- höhe
	[Anzahl]	[Art]	[GV]	[MGE/h]	[GE/s]	[m]	[m]
Schräder 1 - 3	1.164	Aufzuchtferkel (bis 25 kg)	34,9	9,43	2.619		
Schräder 1 - 3	21	NT und leere Sauen, Eber (150 kg)	6,3	0.50	139		
Schräder 1 - 3	54	Jungsauen (bis 90 kg)	6.5	1,17	324		
Schräder 1 - 3	Summe	Gangeaden (Sie ee ng)	0,0	11,09	3.082	7,0	6,0
Schräder 4	92	Sauen mit Ferkeln (bis 10 kg)	36,8	2,65	736	3,0	5,0
Schräder 5	76	NT und leere Sauen, Eber (150 kg)	22,8	1,81	502	3.0	5,0
Schräder 6	363	Aufzuchtferkel (bis 25 kg)	10,9	2,94	817	4,5	6,0
Schräder 7	280	NT und leere Sauen, Eber (150 kg)	84,0	6,65	1.848	4,0	6,0
Schräder 9	46	Jungsauen (bis 90 kg)	5,5	0,99	276	7,0	6,0
Silage Biogas	120	m² Anschnittfläche Silage Mais	120,0	1,30	360	0 - 5	0,0
Shage Blegae	120	m 7 moonmandono onago male	120,0	1,00			
Lefken 1	8	Kühe und Rinder (über 2 Jahre)	9,6	0,41	115	0 - 3	8,0
Upmann 1	28	Kühe und Rinder (über 2 Jahre)	33,6	1,45	403	0 - 3	6,0
Upmann 2	10	Männliche Rinder (0,5 bis 1 Jahr)	5,0	0,22	60		
Upmann 2	10	Männliche Rinder (1 bis 2 Jahre)	7,0	0,30	84		
Upmann 2	7	Weibliche Rinder (0,5 bis 1 Jahr)	2,8	0,12	34		
Upmann 2	8	Weibliche Rinder (1 bis 2 Jahre)	4,8	0,21	58		
Upmann 2	Summe	·		0,85	235	0 - 3	6,0
Upmann 3	20	Kälberaufzucht (bis 6 Monate)	3,8	0,16	46	0 - 3	5,0
Upmann Mist	50	m² Grundfläche Festmistlager (alle Tierarten)	50,0	0,54	150	0 - 3	
Upmann GHB 1	122	m² Oberfläche Güllelager (Rindergülle)	122,0	1,32	366	0 - 3	
Upmann GHB 2	122	m² Oberfläche Güllelager (Rindergülle)	122,0	1,32	366	0 - 3	
Upmann Silage	15	m² Anschnittfläche Silage Gras	15,0	0,32	90	0 - 3	
		NT 11 0 (1-2-)	0	4.5-	=		
Havermann 1	82	NT und leere Sauen, Eber (150 kg)	24,6	1,95	541	5,0	5,0
Havermann 2	320	Aufzuchtferkel (bis 25 kg)	9,6	2,59	720	8,0	9,5
Havermann 3	3	Ponys und Kleinpferde	2,1	0,08	21	0 - 3	4,5
Havermann 4	270	Mastschweine (25 kg bis 115 kg)	37,8	6,80	1.890	6,0	6,0
Havermann 5	12	Sauen mit Ferkeln (bis 10 kg)	4,8	0,35	96		
Havermann 5	150	Aufzuchtferkel (bis 25 kg)	4,5	1,22	338		
Havermann 5	Summe	10-11-11-11-11-11-11-11-11-11-11-11-11-1	0:-	1,56	434	8,0	8,0
Havermann 6	150	Mastschweine (25 kg bis 115 kg)	21,0	3,78	1.050	7,0	8,0


Anlage 2: Lagepläne mit Lage der Emissionsquellen

PROJEKT-TITEL: Glandorf UTM Y-Richtung in m 5769960 5769980 5770000 5770020 5770040 5770060 5770100 5770140 QUE_5 QUE_6 QUE_4 QUE_8 QUE_9 QUE_10 431260 431280 431300 431320 431340 431360 431380 431400 431420 431440 431240 UTM X-Richtung in m

		Firmenname:					
Emissionsquellenplan		ZECH Ingenieurgesellscl	haft mbH				
Schräder		Bearbeiter:					
		TD	75CH 24				
		MAßSTAB: 1:1.500					
		0,04 km	INGENIEURGESELLSCHAFT				
		DATUM:	PROJEKT-NR.:				
		29.08.2017	LG13090.1				

PROJEKT-TITEL: Glandorf 5769840 Kuhbach 5769820 5769800 5769780 UTM Y-Richtung in m 5769720 5769740 5769760 **QUE_12 QUE 13** 5769700 **QUE 14** QUE_11 **QUE 18** 5769680 QUE_15JE_16 5769660 5769640 431580 431600 431620 431640 431660 431560 431680 431540 431700 UTM X-Richtung in m ZECH Ingenieurgesellschaft mbH Emissionsquellenplan Bearbeiter: Lefken Upmann TD MAßSTAB: 1:1.500 0,04 km DATUM: PROJEKT-NR.: 29.08.2017 LG13090.1

Anlage 3: Berechnungsdatenblätter GERDA

KA Glandorf_neu.txt GERDA - EDV-PROGRAMM ZUR ABSCHÄTZUNG VON GERUCHSEMISSIONEN AUS ANLAGEN

Auftraggeber:

Ministerium für Umwelt und Verkehr Baden-Württemberg, Kernerplatz 9, 70182 Stuttgart Programmentwicklung:

Ingenieurbüro Lohmeyer GmbH & Co. KG, An der Roßweid 3, 76229 Karlsruhe

KLÄRANLAGEN

Detailiertes Verfahren Eingabedaten für kommunale technische Anlage		
Offene Anlagenteile Zulaufkanal [m²]	0	Belebungsbecken anoxischer Teil [m²]
572 Zulaufhebewerk [m²]	0	Belebungsbecken aerober Teil [m²]
0 Fäkalschlamm [m²]	0	Tropfkörperanlage [m²]
0 Rechen offen [m²]	0	Rotationstauchkörperanlage [m²]
0 Belüfteter Sandfang offen [m²]	22	Nachklärbecken [m²]
227 Unbelüfteter Sandfang offen [m²]	0	Schlammgerinne [m²]
0 Fettfänger offen [m²]	0	Schönungsteich [m²]
0 Rechengutlager [m²]	0	Schlamm in Voreindicker [m²]
0 Sandfanggutlager [m²]	0	Schlamm in Nacheindicker [m²]
0 Fettfanggutlager [m²]	0	Trübwasser aus Schlammentwässerung [m²]
133 Pufferbecken [m²]	0	Nassschlammteich mit Nachfaulung [m²]
0 Vorklärbecken [m²]	0	Schlammtrockenbeete [m²]
0 Belebungsbecken anaerober Teil [m²] 133	0	Stapelbehälter für stabilisierten Schlamm [m²]
Anteil Fäkalschlamm an Gesamtzulauf [%]	0	
Eingehauste Anlagenteile	Raum- volumen [m³]	Arbeits- Abluft plätze in im Raum

Es findet KEINE Zuleitung von Fäkalschlamm statt!

♀ Ergebnisse der Abschätzung:

Emissions-	Rauml uft-	Entstan-	Vol-Strom	Ger-Strom	Vol-Strom	
faktor	Konzentr.	dener	zur	zur	zum	zum
		Geruch	Bel ebung	Bel ebung	Biofilter	
[GE/(m ² h)]	[GE/m³]	[MGE/h]	[m ³ /h]	[MGE/h]	[m³/h]	[MGE/h]
252		0.0				
378		0.0				
36450		0.0				
252		0.0				
3690		0. 1				
1854		0. 0				
7560		0.0				
1080		0.0				
1350		0. 0				
	faktor [GE/(m²h)] 252 378 36450 252 3690 1854 7560 1080	[GE/(m²h)] [GE/m³] 252 378 36450 252 3690 1854 7560 1080	faktorKonzentr.dener Geruch[GE/(m²h)][GE/m³][MGE/h]2520.03780.0364500.02520.036900.118540.075600.010800.0	faktor Konzentr. dener zur Geruch Bel ebung [GE/(m²h)] [GE/m³] [MGE/h] [m³/h] 252 0.0 378 0.0 36450 0.0 252 0.0 3690 0.1 1854 0.0 7560 0.0 1080 0.0	faktor Konzentr. dener zur zur Geruch Bel ebung Bel ebung [GE/(m²h)] [GE/m³] [MGE/h] [m³/h] [MGE/h] 252 0.0 378 0.0 36450 0.0 252 0.0 3690 0.1 1854 0.0 7560 0.0 1080 0.0	faktor Konzentr. dener zur zur zum Geruch Bel ebung Bel ebung Bi ofi l ter [GE/(m²h)] [GE/m³] [MGE/h] [m³/h] [m³/h] 252 0.0 378 0.0 36450 0.0 252 0.0 3690 0.1 1854 0.0 7560 0.0 1080 0.0

Sei te 2

KA Glandorf_neu.txt								
0.0 Fettfanggutlager	2880		0.0					
Ö. O Pufferbecken	810		0.0					
0.0 Vorklärbecken	810		0.0					
0.0 Bel ebungsbecken anaerober Tei l	850		0.0					
0.0 Bel ebungsbecken anoxi scher Tei l	600		0. 3					
0.3 Bel ebungsbecken aerober Tei I	360		0.0					
0.0 Tropfkörperanlage	360		0. 0					
0. Ö Rotati onstauchkörperanl age	360		0. 0					
0.0 Nachkl ärbecken	150		0. 0					
0.0 Schlammgerinne	396		0. 0					
0.0 Schönungstei ch	40		0. 0					
0.0 Schlamm in Voreindicker	12000		0. 0					
0.0 Schlamm in Nacheindicker	990		0. 0					
0.0 Trübwasser aus Schlammentwässerung	18360		2. 4					
2.4 Nassschlammteich mit Nachfaulung	75		0. 0					
0.0 Schlammtrockenbeete	2988		0. 0					
0.0 Stapelbehälter f. stabilis. Schlamm 0.4	2988		0. 4					
Eingehauste Anlagenteile								
Rechen 0.0 0.0		216	0.0	0.0	0.0	0. 0	0. 0	
Sandfang 0.0 0.0		216	0.0	0.0	0.0	0.0	0. 0	
Fettfang		216	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 Masch. Schlammentwässerung		400	0.0	0.0	0.0	0. 0	0. 0	
0.0 0.0 Masch. Schlammstabilisierung 0.0 0.0		400	0.0	0.0	0.0	0.0	0. 0	

KA Gl andorf_neu. txt

Geschlossene Anlagenteile Faulturm 0.0 0.0		10908	0.0	0. 0	0.0	0. 0	0. 0
Summen Offene Anlagenteile 3.3			3. 3				
Summen Ei ngehauste+Geschl. Anl agent. 0.0 0.0			0. 0	0. 0	0. 0	0. 0	0. 0
Summen gesamte Anlage 0.0 3.3			3. 3	0. 0	0. 0	0. 0	0. 0
======================================	=======	150	=======	=======		0. 0	=======